Finite Math - Fall 2018 Lecture Notes - 9/18/2018

Homework

• Section 3.1 - 79, 81

• Section 3.2 - 9, 11, 21, 23, 24, 30, 33, 35, 37, 39, 43, 65, 66, 68, 70

Section 3.1 - Simple Interest

Example 1. Suppose a brokerage firm uses the following commission schedule

Principal	Commission
Under \$3,000	\$32+1.8% of principal
\$3,000 - \$10,000	56+1% of principal
Over \$10,000	106+0.5% of principal

An investor purchases 75 shares of a stock at \$37.90 per share, keeps the stock for 150 days, then sells the stock for \$41.20 per share. What was the annual interest rate earned on the investment? (Again, assume a 360-day year.)

Solution. 6.352%

Average Daily Balance. A common method for calculating interest on a credit card is to use the *average daily balance method*. As the name suggests, the average daily balance is computed, then the interest is computed on that.

Example 2. A credit card has an annual interest rate of 19.99% and interest is calculated using the average daily balance method. If the starting balance of a 30-day billing cycle is \$523.18 and purchases of \$147.98 and \$36.27 are posted on days 12 and 25, respectively, and a payment of \$200 is credited on day 17, what will be the balance on the card at the start of the next billing cycle?

Solution. We must figure out what the balance is on each day of the month. At the end of day 1, the balance is \$523.18. The first transaction happens on day 12, which is a purchase of \$147.98, making the balance \$671.16. The next transaction is on day 17, a payment of \$200, making the balance \$471.16. The next, and final, transaction is on day 25 which is a purchase of \$36.27, making the balance \$507.43. It helps to make a chart of this data

Day 1-11:	\$523.18	$(11 \ days)$
Day 12-16:	\$671.16	$(5 \ days)$
Day 17-24:	\$471.16	$(8 \ days)$
Day 25-30:	\$507.43	$(6 \ days)$

To find the average daily balance, we can take the sum of the balance at the end of each day, then divide by the number of days.

$$SUM = 11(523.18) + 5(671.16) + 8(471.16) + 6(507.43) = $15,924.64$$

Dividing this number by 30 gives the average daily balance

$$ADB = \frac{SUM}{30} = \$530.82.$$

We can use the formula for interest to figure out the interest incurred (assuming 360 days in a year), $t = \frac{30}{360} = \frac{1}{12}$

$$I = Prt = (530.90)(0.1999)\left(\frac{1}{12}\right) = \$8.84.$$

To find the balance at the start of the next billing cycle, we add this interest to the remaining balance at the end of the last cycle:

New Balance =
$$\underbrace{\$507.43}_{Day \ 30 \ balance} + \underbrace{\$8.84}_{Interest} = \$516.27$$

Example 3. A credit card has an annual interest rate of 19.99% and interest is calculated using the average daily balance method. If the starting balance of a 28-day billing cycle is \$696.21 and purchases of \$25.59, \$19.95, and \$97.26 are posted on days 6, 13, and 25, respectively, and a payment of \$140 is credited on day 8, what will be the balance on the card at the start of the next billing cycle?

Solution. \$708.92

Section 3.2 - Compound and Continuous Compound Interest

Compound Interest. In the case of simple interest, the interest is computed exactly once: at the end. Typically, however, interest is usually compounded something like monthly or quarterly.

Example 4. Suppose \$5,000 is invested at 12%, compounded quarterly. How much is the investment worth after 1 year?

Solution. We find the future value at the end of the first quarter:

$$A_1 = \$5,000\left(1+0.12\left(\frac{1}{4}\right)\right) = \$5,150.$$

This amount is carried into the second quarter and interest is computed again over the quarter:

$$A_2 = \$5,150\left(1+0.12\left(\frac{1}{4}\right)\right) = \$5,304.50.$$

We do this twice more to find a value at the end of the fourth quarter:

$$A_3 = \$5,304.50 \left(1 + 0.12 \left(\frac{1}{4}\right)\right) = \$5,463.635.$$
$$A_4 = \$5,463.635 \left(1 + 0.12 \left(\frac{1}{4}\right)\right) = \$5,627.54.$$

If we generalize this process, we end up with the following result **Definition 1** (Compound Interest).

$$A = P(1+i)^n$$
, where $i = \frac{r}{m}$

The variables in this equation are

- A = future value after n compounding periods
- P = principal
- r = annual nominal rate
- m = number of compounding periods per year
- $i = rate \ per \ compounding \ period$
- n = total number of compounding periods

Alternately, one can reinterpret this formula as a function of time as

$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$

where A, P, r, and m have the same meanings as above and t is the time in years.

Example 5. If \$1,000 is invested at 6% interest compounded (a) annually, (b) semiannually, (c) quarterly, (d) monthly, what is the value of the investment after 8 years? Round answers to the nearest cent.

Solution. In this example, the quantities that will be changing are m and n (and thus also i). The fixed quantities are the principal P = \$1,000 and the annual nominal rate r = 0.06.

(a) Annually compounded means m = 1. Since we are going for 8 years, this means there will be n = 8(1) = 8 compounding periods. We also get $i = \frac{0.06}{1} = 0.06$, so the future value will be

$$A = \$1,000(1+0.06)^8 = \$1,593.85.$$

(b) Semiannually compounded means m = 2. Since we are going for 8 years, this means there will be n = 8(2) = 16 compounding periods. We also get $i = \frac{0.06}{2} = 0.03$, so the future value will be

$$A = \$1,000(1+0.03)^{16} = \$1,604.71.$$

(c) Quarterly compounded means m = 4. Since we are going for 8 years, this means there will be n = 8(4) = 32 compounding periods. We also get $i = \frac{0.06}{4} = 0.015$, so the future value will be

$$A = \$1,000(1+0.015)^{32} = \$1,610.32.$$

(d) Monthly compounded means m = 12. Since we are going for 8 years, this means there will be n = 8(12) = 96 compounding periods. We also get $i = \frac{0.06}{12} = 0.005$, so the future value will be

$$A = \$1,000(1+0.005)^{96} = \$1,614.14.$$

Example 6. If \$2,000 is invested at 7% compounded (a) annually, (b) quarterly, (c) monthly, what is the amount after 5 years? How much interest is accrued in each case? Round answers to the nearest cent.

Solution.

- (a) \$2805.10 with \$805.10 in interest.
- (b) \$2829.56 with \$829.56 in interest.
- (c) \$2835.25 with \$835.25 in interest.